Package: OptSig 2.2

OptSig: Optimal Level of Significance for Regression and Other Statistical Tests

The optimal level of significance is calculated based on a decision-theoretic approach. The optimal level is chosen so that the expected loss from hypothesis testing is minimized. A range of statistical tests are covered, including the test for the population mean, population proportion, and a linear restriction in a multiple regression model. The details are covered in Kim and Choi (2020) <doi:10.1111/abac.12172>, and Kim (2021) <doi:10.1080/00031305.2020.1750484>.

Authors:Jae H. Kim <[email protected]>

OptSig_2.2.tar.gz
OptSig_2.2.zip(r-4.5)OptSig_2.2.zip(r-4.4)OptSig_2.2.zip(r-4.3)
OptSig_2.2.tgz(r-4.4-any)OptSig_2.2.tgz(r-4.3-any)
OptSig_2.2.tar.gz(r-4.5-noble)OptSig_2.2.tar.gz(r-4.4-noble)
OptSig_2.2.tgz(r-4.4-emscripten)OptSig_2.2.tgz(r-4.3-emscripten)
OptSig.pdf |OptSig.html
OptSig/json (API)

# Install 'OptSig' in R:
install.packages('OptSig', repos = c('https://jh8080.r-universe.dev', 'https://cloud.r-project.org'))

Peer review:

Datasets:
  • data1 - Data for the U.S. production function estimation

On CRAN:

This package does not link to any Github/Gitlab/R-forge repository. No issue tracker or development information is available.

1.30 score 20 scripts 155 downloads 16 exports 1 dependencies

Last updated 2 years agofrom:2fbf7b2e65. Checks:OK: 7. Indexed: yes.

TargetResultDate
Doc / VignettesOKNov 12 2024
R-4.5-winOKNov 12 2024
R-4.5-linuxOKNov 12 2024
R-4.4-winOKNov 12 2024
R-4.4-macOKNov 12 2024
R-4.3-winOKNov 12 2024
R-4.3-macOKNov 12 2024

Exports:Opt.sig.norm.testOpt.sig.t.testOptSig.2pOptSig.2p2nOptSig.anovaOptSig.BootOptSig.BootWeightOptSig.ChisqOptSig.FOptSig.pOptSig.rOptSig.t2nOptSig.WeightPower.ChisqPower.FR.OLS

Dependencies:pwr

Readme and manuals